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Hydrodynamic Correlation Functions 
for Binary Mixturest 
CLAUDE COHEN, J. W. H. SUTHERLAND and J. M. DEUTCH 
h p i r t m e n t  of Chemistry 
Massachusetts Institute of Technology 
Cambridge, Mass. 02139 

~ A ~ t r a c ~ O R e l 8 t i O n  functions of various local thermodynamic variables of 
binary mixtures are obtained from the linearized hydrodynamic equations 
following the method of Mountain and Deutch. “ Non-hrentzian ” parts of 
the time Fourier transformed correlation functions which have not been 
included by these authors are obtained here and their effect on the light 
scattering spectrum considered. An extension of the treatment by Fox and 
Uhlenbeck of Landau and Lifshitz hydrodynamicd fluctuation theory to 
binary mixtures haa been accomplished and correlation functions of the 
‘‘ fluctuating forces ” are obtained for this case. 

1. Introduction 

I n  this article we present a comprehensive analysis of the time cor- 
relation functions of the local thermodynamic variables for a binary 
mixture computed according to the linearized hydrodynamic equa- 
tions. (1) The outline of the calculation is presented in Sec. 2 and the 
results for correlation functions in terms of various convenient sets of 
local thermodynamic variables are presented in Sec. 3. The complete 
set of hydrodynamic correlation functions for the binary 0uid has 
previously not been available although some results have been 
reported. (2 -4)  

One important application of these hydrodynamic correlation 
functions is to light scattering. For a binary fluid, outside the critical 
region, the freqcency spectrum of the scattered light is directly 
related to the space a n l  time Fourier transforms of these correlation 
functions. Tnis problem has been considered in detail by Mountain 
and Deutch.(S) These authors, however, did not include in their 
calculation of the correlation functions small terms that give rise to 
“ non-hrentzian ” terins in the spectrum. The terms that were 

t Supported by the National Science Foundation. 
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214 C L A U D E  C O H E N  et al. 

neglected are of order (akz/Cok) where a is a transport coefficient, 
k the wave vector, and C, the adiabatic speed of sound. Omission 
of these terms also results in certain thermodynamic variables being 
uncoupled from others.c6) The terminology " Lorentzian " and 
" non-lorentzian " contribution refers to terms in the correlation 
functions of the form exp [ - at] cos (P t )  and exp [ - at] sin f i t ,  respec- 
tively, because of their evident manifestation in the spectrum. 

In the calculation presented here these.small terms are retained 
and a complete analysis is accomplished to terms linear in the 
transport coefficients. The cross correlations, previously found to 
be zero, are present, and in Sec. 4 we show that these contributions 
lead to " non-Lorentzian " contributions to the spectrum. The 
important conclusion €or light scattering, aa might have been 
expected by analogy to the one component case, is that the " non- 
Lorentzian " contributions appear primarily at the side Brillouin 
peaks and do not affect the complicated structure of the central 
Rayleigh component. This conclusion supports the recent experi- 
mental of the central peak in binary solution 
light scattering where '' non-Lorentzian " contributions have been 
entirely neglected. 

In the final section we extend the treatment, recently presented by 
Fox and Uhlenbeck,(lo) of Landau and Lifshitz(l1) hydrodynamical 
fluctuation theory to binary fluids. It is encouraging to see that the 
general formulation of hydrodynamical fluctuation theory can be 
extended to cases other than the simple one component system. 

2. "he Hydrodynamic Equations 

are the continuity equation 
The linearized hydrodynamic equations for the binary mixture 

where +(r, t )  = div [u(r, t ) ]  ; the NavierStokes equation from which 
we only retain the longitudinal part, 
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CORRELATION F U N C T I O N S  FOR B I N A R Y  M I X T U R E S  215 

the diffusion equation 

w, t) 
at pop  = -div(j)  

where j is the linearized diffusion flux 

Pn 
j =  -poD 

and the entropy equation 

poT,---- as(r' at t ,  = KV'T-[~T(!$),,~ -To(g), ,]divj .  (2.5) 

I n  these equations p(r, t) is the mass density ; s(r, t),  the local entropy 
per unit mass; c(r, t), the local mass fraction of one component; 
T(r, t), the local temperature ; and p ( r ,  t ) ,  the local pressure. The 
transport coefficients appearing in these equations are (1) b = 

(+r )d+~u) /po  where r ) 8  and are the shear and bulk viscosity 
respectively; (2) kT, the thermal diffusion ratio; and (3) D, the 
diffusion coefficient. Equilibrium values are denoted by the sub- 
script zero and thermodynamic derivatives that appear are under- 
stood to be evaluated at equilibrium. The thermodynamic quantity 
kv is defined to be 

I n  addition we have the thermodynamic relationship 

where g is the Gibbs free energy per unit mass and the chemical 
potential p appearing in the above equations is the difference in the 
chemical potential per unit mass of the two components 

P1 Pz 
m1 m2 

t L = - - - .  

The set of Eqs. (2.1)-(2.5) is a closed set of equations for the binary 
mixture. If the entropy is expanded in terms of p, c, and T and we 
is made of Eq. (2.3), the entropy transport equation may be written 
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216 C L A U D E  C O H E N  et al. 

where Cp,c is the heat capacity per unit mass at constant pressure 
and concentration. 

The time dependence of the correlation functions of the local 
thermodynamic variables is computed according to these linearized 
hydrodynamic equations. The procedure to be followed for the 
binary fluid is described in detail in Ref. (3). Three thermodynamic 
variables are required to characterize the state of a binary system. 
The linearized hydrodynamic equations are written in terms of the 
three variables selected and the variable t,h. These four variables 
will be denoted Ni(r, t), i = 1 ,  2, 3, 4. The resulting set of equations 
may be written as 

(2.10) 

where the matrix L(r,r’) is non-singular. 
Laplace transforms we have 

In terms of Fourier- 

M(k, z) * R(k, z) = N(k) 
where 

M(k, Z) = ZI + L(k) 

(2.11) 

with I ,  the identity matrix. In  Eq. (2.11) k(k,  z )  is a column 
vector whose elements are the Fourier-Laplace transforms of the 
variables N i ( r ,  t ) ,  

Ri(k, z) = dt 1 dr exp (ik - r - zt)  Ni(r, t ) .  (2.12) 

The elements of the vector N(k) are the space Fourier transforms of 
Ni(r, 01, 

N,(k )  = dr exp (ik . r) Ni(r, 0). (2.13) J 
The solutions of Eq. (2.11) may be expressed as 

Ri(k, z )  = [det M(k, 2)I-l C Pi,(k, z )  Nj(k) (2.14) 
j 

where the Pi* are algebraic functions. 
matrix follows from Eq. (2.14), 

The correlation function 

(A’,(k, Z) N , (  - k)) = [det M(k, 2)I-l C Pij(k, 2) (Nj(k) Ni( - k)) .  (2.15) 
j 
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The correlation functions are expressed in terms of the time by taking 
the inverse Laplace transform of Eq. (2.15), 

(0 

= (2n)-l J d w  exp ( iwt)(mi(k,  iw)N,(  - k)) .  (2.16) 
- m  

Away from critical points k-' is much greater than the range of 
molecular correlations and an acceptable procedure for computing 
the equilibrium averages (Nj (k )N, (  - k)) is(') 

1 1 
lim - ( N j ( k ) N I (  - k ) )  = - G V N , .  
L . 4  v sz (2.17) 

I n  this equation i t  is understood that the thermodynamic limit is 
taken before k -+ 0. The bar superscript denotes a grand canonical 
average referred to a macroscopic volume element of the fluid which 
is small compared to k-l and hence small compared to the overall 
volume of the system V .  

The quadratic fluctuation averages S", can be computed by 
thermodynamic fluctuation theory. In  thermodynamic fluctuation 
theory the probability of a fluctuation W[6N] is proportional to 
exp[AST(6N)/kB] where A S T  is the change in entropy of system 
plus surroundings caused by the fluctuation 6N. To compute A S T  
for a system we must define the system by keeping one extensive 
variable fixed. If the volume is held fixed the resulting fluctuation 
formulas, obtained in the Gaussian approximation, are identical to 
results obtained for averages of fluctuations in the grand canonical 
ensemble. If the total mass (or number) is held b e d  the fluctuation 
formulas obtained from thermodynamic fluctuation theory in the 
Gaussian approximation are identical to results obtained for averages 
of fluctuations in the isothermal-isobaric ensemble. Provided that 
the thermodynamic quantities, N i ,  are expressed as intensive 
quantities, e.g., temperature, pressure, energy per unit mass, the 
results for the averages of quadratic fluctuations ( 6 N j 6 N , )  will be 
the same in all cases.(12) Here we express all our thermodynamic 
variables as intensive quantities and compute for convenience the 
fluctuation averages by thermodynamic fluctuation theory in the 
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218 C L A U D E  COHEN t3! d. 

scheme where the arbitrary fixed extensive variable is the mass N. 
In  this case(13) 

(2.18) 

In  the Gaussian approximation %& # 0 and # 0 and either 
of the obvious choices of the three thermodynamic variables, (s, p ,  c )  
or (T ,  p ,  c )  result in cross terms appearing in Eq. (2 .15) .  Accorhgly, 
as done in Ref. (3)) we choose the set of variables (4, p ,  c )  where 

+=T-- TO aT p ;  [64=6T-- 6p]  (2 .19)  c, ,c Po C P , C  P o  
and aT is the thermal expansion coefficient aT = - po-'(ap/aT),,, .  In 
terms of these variables, in the Gaussian approximation, 

where BS,, is the adiabatic compressibility, 

BT ,c = Po-'( ap /dp )  T ,c is the isothermal compressibility 'and 7 = 

C,,c/Cv,c. This choice of variables assures that the matrix of 
equilibrium correlation functions (N(k)N( - 9)) is diagonal in the 
small k limit with a resulting simplification in Eq. (2.15). 

The new variable 4, as constructed, is a linear combination of T 
and p .  If one expan& T as a function of the variables p ,  c and s, it  
is an easy matter to show that 

(2 .21 )  

This is an important representation of the new variable 4 since it 
shows that 4 is a linear combination of s and c but independent of p .  
Since s and c fluctuations do not propagate as a sound wave while 
the variable p does, we may expect that the coupling between rp and p 
will be of a different character than that between 4 and s or c. In 
the original treatment@) 4 was found to be uncoupled to p for all 
times. Here we show that these variables are coupled to terms that 
have a " non-Lorentzian ) )  character. 

If the elements of N are taken to be c ,  p ,  4 and $,the 4 x 4 matrix 
M has the form 
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220 C L A U D E  COHEN d d. 

where we have introduced x = K / ~ , C ~ , ~ ,  the adiabatic speed of sound 

It is now possible to determine the correlation functions of interest 
Co2 = ( d p / a p ) s , e ,  and 9 = k,/po +kT aTIPoC9.e- 

for the binary fluid. The results are given in the next section. 

3. Correlation Functions of the Binary Fluid 
To terms linear in the transport coefficients the dispersion relation 

for the binary fluid is 

detM = ( ~ + ~ ~ ) ( ~ + ~ ~ ) ( z - i C ~ k + I ' k ~ ) ( z + i C , k + I ' k ~ )  = 0 

where 

k2 (x  1- 9) + [ ( x  + -q2 - 4xDl"2 
k2 z1 = - 
2 

k2 kZ 
2 2 2 2  = - ( x  + 9) - - [ ( x  + 9 ) 2  - 4xDI''Z 

with 

The resulting correlation functions are 

When compared with the results of Ref. (3) the p-p correlation 
function is modified by the presence of I'  non-lorentzian " terms, 
whereas the correlation functions involving only $ and c remain 
unmodified. Finally, the correlation functions $-p and c-p which 
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(3.9) 

(3.10) 

The cross correlations in Eqs. (3.9) and (3.10) do not affect the 
complex central Rayleigh peak of the light scattering spectrum of a 
binary mixture which arises from the diffusive mode, the heat mode 
and the coupling between them. 

The correlation functions for the variables (8, p ?  c) may also be 
determined. Besides the concentration-concentration correlation 
given by Eq. (3.7) these correlation functions are 

(zl + z2 - 2Dka) + CT ka]} 
' [ (;),'J'( %) p ,c TO 

+ c { z 2 - D k *  2 2  -21 -($,)s,lg) 9 .P 

- [($)i:T($) (zl +z,  - 2DkZ) +- 
9 .c 2DkT TO k211 

(3.11) 

(3.12) 
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222 C L A U D E  C O H E N  et al. 

Equations (3.11) and (3.12) may be obtained from Eqs. (2.20) and 
the set of Eqs. (3.6), (3.7) and (3.8). Alternatively, they may be 
obtained via a procedure similar to the one presented in Sec. 2 
where the linearized hydrodynamic equations are written directly 
in terms of the variables s, p ,  c and I/J. We also find a coupling 
between s and p which is of first order and consists only of L' non- 
Lorentzian " terms, 

(3.13) 

Finally the correlation functions of the set of variables p ,  T and c 
may be obtained by expressing p and T in terms of variables whose 
correlation functions have already been evaluated or by proceeding 
as in Sec. 2 with the hydrodynamic equations expressed in terms 
of p ,  T ,  c and +. Lengthy but straightforward calculations 
yield 

- ( z , + z 2 - 2 D k 2 - -  
TO 

k + e-rk't cos Cokt + ( 3 r  - b )  - e-rk'c sinCokt} , 
QO 

(3.14) 
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224 C L A U D E  C O E E N  et al. 

and 

(3.18) 

where ,9T,w = po-l(ap/ap)T ,p. For comparison, the hydrodynamic 
correlation functions for the one component system are included in 
Appendix A. 

k - - e - r k ' t  sin C 0 k ,  
CO 

4. The Light Scattering Spectrum 

the generalized structure factor 
The intensity of the scattered light I(Ro, k ,  w )  is proportional to 

with 
(4 .1)  

where E is the dielectric constant. Expressing z as a function of p ,  
C$ and c we get for S(k ,w)  

S(k ,  w )  = 2 M R e  (i(k, w )  E (  - k))  
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CORRELATION F U N C T I O N S  FOR B I N A R Y  MIXTURES 225 

The last term which was not included by Mountain and Deutchcs) 
consists of " non-hrentzian " contributions to the Brillouin peaks 
centered at *C,k .  These terms will tend to distort the Brillouin 
peaks and shift their integrated intensity toward the central Rayleigh 
peak.(16) When the dielectric constant in Eq. (4 .1 )  is expressed in 
terms of the variables p ,  8 and c, the p p  correlation function will 
give rise to the Brillouin peaks, the C-C, 9-8 and S-G correlations will 
produce the central peak, and the p-s and p-c will give rise to '' non- 
hrentzian " additions to the Brillouin peaks. The important point 
to note about this new expression for the spectrum of the binary 
fluid is that the non-lorentzian )' terms primarily contribute to 
the side Brillouin doublets as in the one component case. Provided 
the doublets are well separated from the central component there 
will be little distortion of the central Rayleigh line. This conclusion 
is of some importance since i t  establishes that, for a well separated 
spectrum, " non-lorentzian " terms need not be included for the 
analysis of the central part of the spectrum. Experimental verifica- 
tion of the rather complicated structure of the central component for 
binary mixtures has not yet been reported and remains a matter of 
considerable interest. 

In the limit of small concentration the thermal diffusion ratio 
kT tends to zero and one obtains for the central peak from 
Eq. (4 .2 )  

which. is identical to the expression obtained by Mountain and 
Deutch(3) for this case. However it is not true, ;t8 is sometimes 
etated,@~9) that in the limit of low concentration the entropy and 
concentration fluctuations decouple to give rise to the two separate 
hrentzian components in Eq. (4 .3 ) .  Indeed from Eqs. (3 .7 ) ,  (3 .11) )  
and (3 .12)  one may show that the S-s correlation function depends 
upon both the thermal diffusivity x and the diffusion constant B 
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22 6 C L A U D E  C O H E N  et al. 

while the s-c and cc correlation functions depend on D only. 

Dk2 
(4.5) 

(aPLIaT) 9 ,c lim M Re (s(k, w)c( - k, 0 ) )  = - keTo 
k d  ( ~ P / ~ C ) ~ , T  we + (Dk')' 

kBTo Dk2 lim M Re (c(k, w)c( - k, 0 ) )  = 
k A  ( d p / d ~ ) ~ , ~  w' + (Dk')'. 
These expressions clearly indicate in the dilute limit the contribution 
of diffusion to the entropy correlations and the non-vanishing 
coupling between the entropy and concentration fluctuations. If the 
dielectric fluctuations in Eq. (4.1) are expressed in terms of s and c 
a t  constant p ,  then in the limit of kT + 0 use of Eqs. (4.4)-(4.6) yields 
Eq. (4.3). On the other hand, the variables c and 4 (or T as far as 
the central line is concerned) decouple when kT --+ 0. The variables 
c and s do not. Of course either set leads to the same expression for 
the spectrum. 

Finally we note that for many binary mixtures an adequate form 
for the dielectric constant at  optical frequencies is given by the 
Clausius-Mossoti formula 

= $ [ ( $ ) P 1 + ( Z ) P 2 ) ]  (4.7) 

where ai is the molecular polarizability of component i and p i  is the 
mass density of component i. In  terms of c, the mass fraction of 
component 1, one finds 

E - 1  z2 = T p [ ( ~ - ~ ) c + ~ J  477 
(4.8) 

so that E = ~ ( p ,  c). 
polarizabilities are equal for the two components 

One can find systems for which the effective 

In this case the dielectric constant is a function of density only and 
the light scattering spectrum will arise from the density-density 
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correlation function given in Eq. (3.14). This accidental equality 
of the effective polarizability may advantageously be used to study 
density-density correlation functions for binary systems, for example 
in the critical region. The precision is limited of course by how 
accurately the equality Eq. (4.9) is realized. 

5. Hydrodynamical Fluctuations 

The Landau and Lifshitz theory of hydrodynamical fluctuations 
has recently been put on a firm basis by Fox and Uhlenbeck who 
derive fluctuating hydrodynamic equations for a one component 
system. (10) The general procedure developed by Fox and Uhlenbeck 
may be employed to treat more complex hydrodynamic situations 
In this section we present the results obtained for binary systems. 
Our objective is the calculation of correlation functions of the random 
functions associated with the fluctuating hydrodynamic variables. 

If instead of the original set of variables N i  = c, p ,  4 and $ we use 
the shghtly modified variables ui(r, t ) ,  i = 1 to 6, 

(5.1) 

with a = 4, 5 ,  6 in Eq. (2.10), the matrix L(r, r’) of that equation 
becomes symmetric with respect to interchange of indices 

and may be decomposed into a symmetric and anti-symmetric part 
with respect to the argument 

and 

a&, t )  = (poCp,c/~o)l~z+(r ,  t ) ,  and a&, t )  = po112u,(r, t )  

LAr, r’) = L ( r ,  r’) 

L,,(r, r‘) = A*,(r, r’) + K,(r, r’) 

Lt,(r‘,r) = -At,(r,r‘)+&,(r,r‘). 
The hydrodynamic set of linearized equations for binary mixtures 

may then be written as 

t ,  + A(r, r’) a@’, t )  dr’ = S(r, r’) * a(r’, t )  dr’ (5.2) 

which is a form identical to that obtained by Fox and Uhlenbeck(10) 
for the one component case. The 6 x 6  anti-symmetric and sym- 
metric matrices A(r, r’) and S(r, r’) are defined by 

- J  at -1 
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A(r, r’) = 

and, 

- 0  

0 

0 

S(r, r’) = 

0 
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0 1 

J 0 0 

0 0 

[= T 0 C 9 , C  (2)9,,+x] 6 P "  

0 

0 

0 

(6.3) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



230 C L A U D E  C O R E N  etd. . 

where we have used the convention of summation over repeated 
indices. 

From the expression of the total entropy 

S = s  psdv 
V 

and the use of Eqs. (2.1) and (2 .5)  we may compute the time rate of 
change of the entropy to be 

where 2D,, = au,/ar, + aug/drn. In obtaining the above equation the 
assumption G f  no flow of either momentum or heat flux across the 
bounding surface has been made. It can be shown that in terms of 
the variables a(r, t )  and the matrix S(r, r') the time rate of change 
of the total entropy, Eq. (5.5), may be written as 

- 1  s = - J J a(r, t )  - S(r, r') - a(r', t )  dr dr'. 
TO 

On the other hand, it follows from the standard expression for the 
entropy 

S = So - +kB a(r, t )  - E(r, r') - a(r', t)  dr'dr' (5.7) ss  
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and Eq. (5.2) that  

[ - A(r, r”) - E(r“, r’) -+ E(r, r”) * A(r“, r’)] - a(r‘, t )  

+ a(r, t )  - [S(r, r”) E(r”, r’) + E(r, 1”) - S(r“, r’)] 

- a(r’, t ) }  dr dr‘ dr” (5 .8 )  

which by comparison with Eq. (5:6) yields 

1 E(r, r’) = - I 6(r - r’). 
kBTo (5.9) 

In hydrodynamic fluctuation theory a 0uctuating force is added 
to the right-hand side of Eq. (5.2) which transforms the set of hydro- 
dynamic equations into a set of stochastic equations of the Langevin 
form, 

w, t )  
at 
- = - 1 [A(r, r’) + S(r, r‘)] - a(r’, t )  dr‘ +F(r, t) .  (5.10) 

The properties of the random ‘‘ forces ” for the binary system may 
be established in an identical fashion as that employed by Fox and 
Uhlenbeck for the one component case. One finds that the random 
forces have mean zero and correlation functions 

(F(r, t)F(r‘, t ’ ) )  = 6( t  - t ’ )  {[A(r, r”) + S(r, r“)] E-1 (r”, r’) J 
+ E-I (r, r”) [&r”, r‘) + $(r’’, r’)]} dr” (5.11) 

and $ denote the transpose of A and S respectively. From 

(5.12) 

where 
Eq. (5.9) and the symmetry properties of A and S one finds 

(F(r, t)F(r’, t ’ ) )  = 2koToS(r, r‘) 6(t - t ’ )  

which is the same form as obtained for the one component case.(10) 
If we define 

F&, t )  = (poToCp,c)-lW * g, and FJr, t )  = p;l’Z( V S ) ,  
(5.13) 
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we can rewrite the linearized hydrodynamic equations corresponding 
to Eq. (5.10) as 

(5 .14)  1 ac 
at 

V ’ + + 9 V a p  + V - f  

(5 .16)  

The correlation of the fluctuating terms of these equations may be 
readily obtained from Eqs. (5.4), (5.12) and (5.13) 

I 6(r - r’) 6(t  - t ‘ )  
D 

Po(a t l /aC)u  ,T 
(f(r, t)f(r’, t ‘ ) )  = 2ksT0 
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The three fluctuating " forces )' i (r ,  t ) ,  i ( r ,  t )  and &, t )  are not 
independent. It may be seen from the above correlation functions, 
Eqs. (5.18)) that 

(5.20) 

Furthermore, the continuity equation, Eq. (2.1) 

dp+pov.u = 0 
at 

may e a d y  be shown to have no fluctuation part aa is the caae in one 
component systems,(10) simply by expressing the density p in terms 
of our variables c, p and and using Eqs. (5.13-5.15) and (5.20). 
Finally, we note that the fluctuating stress tensor SOB is not correlated 
with f, K, or i. 

Appendix A 
Previous results €or the correlation functions of hydrodynamic 

variables of one component systems have either not presented the 
" non-lorentzian " contributions to the light spectrum(14~1~Je) or 
given a non-systematic procedure of obtaining them.(") Here the 
complete explicit forms of these correlations to first order in the 
small parameters xklC, = hk/poC9Co and 

rk 1/2[b + ~ ( l  - l / y ) ] k  _ -  - 
CO CO 

have been obtained from the linearized hydrodynamic equations by 
the consistent approximation outlined in Sec. 2. For the variables 
p and T the results are 

( P ( k  t ) P (  - k, 0)) = ( 1 - - :> exp ( :orp t ) +; e - r k ' t  cos C& 
(I P(k) l a )  

(3r - b)k e-rk't C o k  +- 
Y co 

XkS (T(k' t)T( - k' O ) )  = ! exp ( - - t ) + ( 1  - .!) e - r k ' t  ~ 0 s  C& 
(I T ( k )  12) Y POC 9 

+( 1 -$) [ r - a  ( 1  +;)I k e - r p t  sinc,~ (A.z) 
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- ( r  - :) $ crkSt sinC& 1 . (A.3) 

When the linearized hydrod.ynamic equations are written in terms 
of s and p one obtains 

The above results may also be obtained from (A.l-A.3) by express- 
ing p and T in terms of s and p. From Eqs. (A.4-A.6) it is seen that 
the central Rayleigh Feak will be an unmodified Lorentzian line due 
to the entropy-entropy correlation function, whereas the Brillouin 
doublets will be Lorentzian lines modified by " non-Lorentzian " 
contributions from the pressure-pressure and pressure-ntropy 
correlations. 
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